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Abstract: The scattering of  harmonic waves by two collinear symmetric cracks is studied 

using the non-local theory. A one-dimensional non-local kernel was used to replace a two- 

dimensional one for the dynamic problem to obtain the stress occurring at the crack 

tips. The Fourier transform was applied and a mixed boundary value problem 

was formulated. Then a set of  triple integral equations was solved by using Schmidt '  s 

method. This method is more exact and more reasonable than Eringen' s for solving this 

problem. Contrary to the classical elasticity solution, it is found that no stress singularity is 

present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at 

the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress 

hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice 

parameter and the circular frequency of  incident wave.  
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Introduction 

The last four decades have witnessed the inauguration of a novel theory of material bodies, 

named the non-local mechanics. This was done "primarily due to  the efforts of Edelen Ell , 

Eringen [2] , Green and Rivlin [3] . According to the non-local theory, the stress at a point X in a 

body depends not only on the strain at point X but also on those at all other points of the body. 

This is different from the classical theory. For the classical theory, the stress at a point X in a 

body depends only on the strain at point X.  In Eringen's  papers [4 - 7 ] ,  the state of stress near 

the tip of a sharp line crack in an elastic plate subjected to uniform tension, in-plane shear and 

anti-plane shear are discussed. The field equations employed in the solutions of these problems 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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are those of the theory of the non-local elasticity. The solutions gave finite stress at the crack 

tips, thus resolving a fundamental problem that has remained unsolved over half a century. This 

enabled us to employ the maximum-stress hypothesis to deal with fracture problem and the 

composite materials problem in a natural way. However, they were not exact and there is 

oscillatory stress near the crack tip [a] . The iteration error is also not reasonable [a- 71, because the 

dual integral equation has a super singularity integral kernel , .  To overcome the difficulty, 

Schmidt 's  method [8] will be used; In recent papers [ 9 -  131, the static state and the dynamic 

state problems for a crack were investigated by using the non-local theory with Schmidt '  s 

method, respectively: To the author 's  knowledge, analytical treatment of two transient I-cracks 

problem by using the non-local theory has not been attempted. 

For the above=mentioned reasons, the present paper deals with the dynamic problem of two 

collinear cracks in an elastic plate by using the non-local theory. The field equations of non-local 

elasticity theory was employed to formulate and solve this problem. The Fourier transform is 

applied and a mixed boundary value problem is formulated. Then a set of triple integral equations 

is solved with a new method, namely, Schmidt' s method Is] . In solving the equations, the crack 

surface displacement is expanded in a series using J/lcobi' s polynomials and Schmidt'  s method is 

used; This process is quite different from that adopted in Eringen' s papers [ 4 - 71 and can 

overcome mathematical difficulty involved. The solution in this paper is more accurate and more 

reasonable than Eringen'  s ones. The solution, as expected, does not contain the stress singularity 

near the crack t ips.  The stress along the crack'  s line depends not only on the crack length, but 

also on the lattice parameter and the circular frequency of incident wave. However, the stress 

resulting from the classical theory depends only on the crack length. 

1 Basic Equations of Non-local Elasticity 

According to the non-local theory, the stress at a point X in a body depends not only.on the 

strain at point X but also on those at all other points of the body. This observation is in 

accordance with atomic theory 'of the lattice dynamics and experimental observation of the phonon 

dispersion [14] . Basic equations of linear, homogeneous, isotropic, non-local elastic solids, with 

vanishing body force are 

rkz,1, = p a t ,  ( 1 )  

rkt(X,t) = f (I X' X' vr - x I ) , ~ , (  , t ) d V ( X ' ) ,  (2) 
3 

where 

,~ i i ( x '  , t )  = 2 , U r , , ( X ' , t ) ~ i  i + ~,[ui , j (X' , t )  + ~..~(X' , t ) ] ,  (3) 
where the only difference from classical elasticity is in the stress constitutive equation ( 2 )  in 

which the stress rkt ( X )  at a point X depends on the strains ekt ( X ' ) ,  at all points of the body. 

For homogeneous and isotropic solids there exist only two material constants, A and /1 are the 

Lame constants of classical elasticity, p is the mass density of the material, a ( I X' - X I ) is 

known as influence function, and is the function of the distance I X' - X J. The expression (3) 

is the classical Hook '  s law. Substitution of equation (3 )  into equation (2 )  and using Green- 

Gauss theorem, we can obtain 

f ,~ ( I  x '  - x I)[(x + ~ ) u ' ~ , k ~ ( x ' , t )  + , ~ u . k ~ ( x '  , t ) ] d Y ( X ' )  - 
v 
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I a ( I  X' - X I ) a k t ( X ' , t ) d a k ( X ' )  = pat. 
o V  

Here the surface integral may be dropped if the only surface of the body is at infinity. 

2 T h e  C r a c k  M o d e l  

(4) 

It is assumed that there are two collinear symmetric cracks of length 1 - b along the x-axis 

r I in an elastic plate as shown in Fig. 1. 2 b is the distance 

between the two cracks. Let w be the circular frequency 

1 I 1 

Fig. 1 Incidence of a time harmonic 

wave on two collinear sym- 

metric cracks of the 

length 1 - b 

of the incident wave. - ro is a magnitude of the 

incident wave. In what follows, the time dependence of 

all field quantities assumed to be of the form e-i,,t will 

be suppressed but understood. It was further supposed 

that the two faces of the crack do not come in contact 

during vibrations. The solution of two collinear 

symmetric cracks of arbitrary finite length can easily be 

obtained by a simple change in the numerical values of 

the present problem. When the cracks are subjected to 

the harmonic elastic waves, as discussed in [ 15 ] ,  the 

boundary conditions on the crack faces at y = 0 are ( b is a dimensionless variable) : 

r y x ( x , 0 , t )  = 0, v ( x , O , t )  = O, I x I > ' 1 ,  I x I <  b ,  (5) 

r y ~ ( x , O , t )  = O, r r r ( x , O , t )  = -  t o ,  b ~<1 x I~< 1, (6) 

u ( x , y , t )  = v ( x , y , t )  = 0, (x  2 + y2)1/2__~ ~ .  (7) 

In this paper, the wave is vertically incident and we only consider that ro is positive. 

3 T h e  T r i p l e  I n t e g r a l  E q u a t i o n s  

According to the boundary conditions, the equation (4) can be written as follows: 

f|174 |174 a ( ,  x ' -  x , ,  , y ' -  y , ) [ ( A  + t ~ ) u ' k . k j ( x ' , y ' , t )  + 

, u u i , k k ( x ' , y ' , t ) ] d x ' d y '  - 2 , u  + a ( I  x '  - x I ,  I y I) x 
- 1  

[ e z j ( x ' , O , t )  ]dx' = -  txo2uj, (8) 

where [ ez j (x '  ,0, t ) ]  = e21(x' ,0 § , t) - e2j(x'  ,0- , t) is a jump across the crack. 

e k j ( x , y , t )  = 0 . 5 [ u k . j ( x , y , t )  + u j . k ( x , y , t ) ] .  

From the reference [ 7 ] ,  it can be obtained: 

[e21(x ,O , t ) ]  = 0 for a l l x .  (9) 

Define the Fourier transform by the equations 

f ( s )  = _ ~ f ( x ) e - i ' X d x ,  (10) 

f ( x )  = l I |  ? ( s ) e i ' X d s .  (11) 
z ; 7 ~ J _  r . 

For solving the problem, the Fourier transform of equation (8)  with respect x can be given as 

follows : 
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f | s I ,  y '  - y I ) [ / ~ ' y y  - - + / ~ ) 6 ' y ] d y '  = -  d ( I  I + 2 / z ) s 2 ~  ' is(A 6~o2~, 
_ao  

(12) 

f | s I ,  y '  - y + + + - = - I I ) [ -  is(A /A ) U ' , y  2/l)~' ,y s S2,U~' ] d y  ' pO~2~. 
_ao 

(13) 

For the influence function a ,  as discussed in [9,  11, 13, 16, 17] ,  it seems obvious that one has 

to resort to an approximate procedure. In the given problem, the appropriate numerical procedure 

seems to spring quite naturally from the hypothesis of the attenuating neigborhood underlying the 

theory of the non-local continua. According to this hypothesis, the influence of the particle of the 

body, on the thermoelectric state at the particle under observation, subside rather rapidly with an 

increasing distance between the two particles. In classical theory, the function that characterizes 

the particle interactions is the Dirac delta function since in this theory the actions are assumed to 

have a zero range. In non-local theories the intermolecular forces may be represented by a variety 

~f functions as long as their values decrease rapidly with the distance. In present study, as 

adequate functions, it was decided to select the terms: 

6 ( I  s I ,  I y '  - y I) = ~ o ( S ) ~ ( y '  - y ) .  14) 

From equations (12) and ( 13) ,  it can be gotten 

t~0(S) [ / .ZU,yy  -- (/), + 2 / .Z)S2~  -- i s ( X  + / . t ) V , y ]  ---- -- ~O92U, 15)  

~ 0 ( s ) [ - i s ( 2  + ~z)~,y + (2 +2/~)~,yy - s 2 / ~ ]  = -  po~2~, 16) 

whose solutions do not present difficulties, it can be obtained ( y  I> 0) 

21 - = - s A l ( s ) s i n ( s x ) e x p ( -  ~ ' l y ) d s  - u ( x , y , t )  -g o 

2I~ ?'2A2( s ) s i n (  s x ) e x p ( -  ? ' 2 y ) d s ,  17) 
- g o  

21 - ? q A l ( S ) C O S ( s x ) e x p ( -  ~ ' l y ) d s  - v ( x , y , t )  = - -g o 

sA2 ( s )cos(  sx ) exp (  - ?'2 y )ds  , 18) 
- 4 o  

where 
2 2 

O.) , ) / 2  2 --  0.) 

= c  o(s) 2 = s 

+ 2/z 
C 1 = ~/ ~ C2 = 

P 
Now, let the function A ( s ) be defined such that 

1 [s 2 + ~ , 2 ] ( ~ o ( s ) A ( s )  ' (19) A l ( s )  - 2), 1 

A2(s )  = S ~ o ( s ) A ( s )  (20) 

because of symmetry, it suffices to consider the problem in the problem in the first quadrant only. 

The boundary conditions can be applied to yield 

f ' a ( s ) c o s ( s x ) d s  = 0 (0 < x < b,  x > 1) ,  (21) 
3 0  
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I | 62(s) f (s)A(s)eos(sx)ds nr0  �9 0 - 2/~ (b < x < 1 ) .  (22)  

The equations (21)  and (22)  are the triple integral equations of  this problem.  In equation ( 2 2 ) ,  

f (  s ) i s  given as follows : 

1 ]2 f ( s )  = ~ l { [ S  2 * y2 _ 4 2r~r2}. 

4 

(23)  

S o l u t i o n  o f  t h e  T r i p l e  I n t e g r a l  E q u a t i o n  

The only difference between the classical and non-local equations is in the introduction of  the 

/ l+b// 1+ 2/1J2 
(x 2) x 2 1 -  v = anP~l/2"1/2) 1 - b 2 

2 

v = 0 ( for  x > 1, x < b ,  y = 0 ) ,  

for b < x ~< 1, y -- 0,  (27)  

(28)  
. n ( 1 / 2  1/2) ( X )  i s  a J a c o b i  polynomial [181 where an are unknown coefficients to be determined anu r n ' 

The Fourier transformation of equation (27)  is [ls] : 

---- , ---- $ , ~c~A(s) ~(s O,t) .=oanB"Gn(s ) 1 

l { i :  1)n/zc~ s ~ -~- )  
Bn = 2 4~n n! ' 1)n_l/Zsin I 

(29)  

( n  = 0 , 2 , 4 , 6 , " ' ) ,  

( n  = 1 , 3 , 5 , 7 , " ' ) ,  

(30) 

function a0 ( s ) ,  it is logical to utilize the classical solution to concert  the system equations (21)  

and ( 2 2 )  to an integral equation of the second kind which is generally better behaved.  For 

a = 0,  then 6 0 ( s )  = 1 and equations (21)  and (22)  reduce to the triple integral equations for 

the same problem in classical elasticity. Of  course,  the triple integral equations can be considered 

to be a single integral equation of  the first kind with a discontinuous kernel [4] . It is well-known in 

the literature that integral equations of the first kind are generally ill-posed in sense of  Hadamard,  

i . e .  small perturbations of  the data can yield arbitrarily large changes in the solution. This makes 

the numerical solution of such equations quite difficult. In this paper ,  the Schmidt '  s method was 

used to overcome the difficulty. As is discussed in [7]  and [ 1 7 ] ,  it was taken 

a0 = g 0 e x p ( -  (/3/a)2(x ' - x ) 2 ) ,  (24)  

1 
zo  = (25)  

where t3 is a constant,  a is the lattice parameter.  

So we obtain 

f f0 ( s )  = e x p ( -  (2/3)2) . (26)  
( s a )  2 

~ 0 ( s )  = 1 for the limit a - + 0 ,  so that the equation (22)  reduces to the well-known equation of 

the classical theory. Here the Schmidt method Is] can be used to solve the triple integral equations 

(21)  and ( 2 2 ) .  The displacement v was represented by the following series: 
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where 1"( x ) and Jn ( x ) are the Gamma and Bessel functions, respectively. 

Substituting equation ( 2 9 ) i n t o  equations (21) and ( 2 2 ) ,  respectively, the equation (21) has 

been automatically satisfied, the equation (22) reduces to the form for b < x < 1 

logo2 ( ~- 1 j  ~ ;rr~ w24/1c~ ,=0a"B, s )G,~(s ) f ( s )  ,§  )cos(xs)ds : -  . (31) 

For a large s, the integrands o f  the equation (31) almost all decrease exponentially. So the semi- 

infinite integral in equation (31 )  can be evaluated numerically by Filon'  s method! ~9] . Thus 

equation (31) can be solved for coefficients a n by the Schmidt' s method Is] . For brevity, the  

equation (31 ) can be rewritten as 

~ . E . ( x )  : u ( x )  (b < ~ < a) ,  (32) 
n=0 

where En ( x )  and U ( x )  are known functions and coefficients an are unknown and will be 

determined. A set of functions Pn ( x ) which satisfy the orthogonality condition 

f l b P m ( X ) P n ( x , ) d x :  Nn(~mn , Nn~ .  f lbP2(x , )dx  ( 3 3 )  

can be constructed from the function, E n ( x ) ,  such that 

~ M i n  . 
Pn (x )  = ,=0 ~-~,E~(x), (34) 

where M 0. is the cofactor of the element dii of D~, which is defined as 

- doo, d01, do2 , ""  , don 

dl0, dll , d 1 2  , " "  , din 

d20, d21, d22 ,""  , d2n 

Dtz ~ . . . . . . . . . . . . . . . . . . . . . . . . . . .  

d=o , d,l , dn2 , "" , d~ 
Using equations (32) - (35) ,  we obtain 

, d q =  ybE,(t)Ej(x)dx (35) 

"~ Mnj 
an = i~=~qj Mjj 

with 

-~jfl u (  x ) Pj( x )dx qJ = b 

5 Numer ica l  Calculat ions  and Di scuss ion  

(36) 

(37) 

When coefficients a n are known, the entire stress field is obtainable. However, in fracture 

mechanics, it is of importance to determine stress try along the crack fine. try at y = 0 is given as 

follows : 

s .1,Is 1 "Fyy - -  ~602 n=O 0 

For a = 0 at x = 1, b, we have the classical stress singularity. However, so long as a # 0, the 

equation (38) gave a finite stress all along y = 0. At b < x < 1, ryy/Vo is very close to unity, 
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and for x > 1, z-yy/r0 possesses finite values diminishing from a maximum value at x = l to zero 

at x = oo. Since a / [ 2 p ( 1  - b ) ]  > 1/100 represents a crack length of  less than 100 atomic 

distances ~6] , and such submicroscopic sizes, other serious questions arise regarding the 

interatomic arrangements and force laws. We do not pursue solutions at such small crack sizes. 

The dynamic stress is computed numerically for the Lame constants ;t = 98 x 109 ( N / m  2 ) ,  /2 = 

77 x l09 ( N / m  2 ) ,  /9 = 7 .7  x 103 ( k g / m 3 ) .  The semi-infinite numerical integrals, which occur,  

are evaluated easily by Filon and Simpson '  s methods because the rapid diminution of  the 

integrands. From Refs. [20]  and [21 ] ,  it can be seen that the Schmidt '  s method is performed 

satisfactorily if the first ten terms of  infinite series to equation (31)  are retained. The results are 

plotted in Figs. 2 -  11. 
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The following observations can be made:  

i ) The method that used in this paper can overcome the mathematics difficulties that occur 

in E r ingen ' s  papers [4 ,  6,  7 ] .  The results are more accurate than E r i nge n ' s  ones.  The method 

is more reasonable than E r ingen ' s  ones; 

il ) The maximum stress does not occur at the crack tip, but slightly away from it. This 

phenomenon has been thoroughly substantiated by Eringen [14] . The maximum stress is finite. The 

distance between the crack tip and the maximum stress point is very small.  This distance depends 

on the lattice parameter, the crack length and the circular frequency of the incident wave. 
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Contrary to the classical elasticity solution, it is found that no stress singularity is present at the 

crack tip, and alsothe present results converge to the classical ones for positions when far away 

from the crack tip; 

ill ) The normal stress at the crack tip becomes infinite as the atomic distance a ~ 0. This is 

the classical continuum limit of  square root singularity; 

iV ) For the a / p  = constant, v i z . ,  the atomic distance does not change,  the value of  the 

dynamic stress concentrations (at  the crack tip) becomes higher with the increase of  the crack 

length. Note this fact, experiments indicate that materials with smaller cracks are more resistant to 

fracture than those with larger cracks; 

V ) The variation of the stresses is nonlinear with increasing of  the frequency, The stresses 

do not increase for all the frequency; 

V[ ) The significance of  this result is that the fracture criteria are unified at both the 

macroscopic and microscopic scales; 

Vii ) The left t ip '  s stress is greater than the right t ip '  s stress for the right crack. At the end 

of  the right c rack ,  the stress on the crack line becomes lower with the increasing of  the distance 

between the two cracks. 
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